EQUAÇÃO GERAL DE GRACELI.

  G ψ = E ψ = E [G+ψ ω /c]  {}   [/ ] /  /   = ħω [Ϡ ]  [ξ ] [,ς]   ψ μ / h/c ψ(xt)  [x  t ]..

 G ψ = E ψ = E [G+ψ ω /c] =   [/ ] /  /   = ħω [Ϡ ]  [ξ ] [,ς]   ψ μ / h/c ψ(xt)  [x  t ]..


MECÂNICA GRACELI - FÓTON-MAGNÉTICO DINÂMICA QUÂNTICA RELATIVISTA.

 [G+ψ ω  / c]

 = ordenação de tempo.


 TENSOR G+ GRACELI, = SDCTIE GRACELI, DENSIDADE DE CARGA E DISTRIBUIÇÃO ELETRÔNICA, NÍVEIS DE ENERGIA, NÚMERO E ESTADO QUÂNTICO. + POTENCIAL DE SALTO QUÂNTICO RELATIVO AOS ELEMENTOS QUÍMICO COM O SEU RESPECTIVO  E ESPECÍFICO NÍVEL DE ENERGIA.




 /   EQUAÇÃO GERAL DE GRACELI.

 G ψ = E ψ = E [G+ψ ω /c] =   [/ ] /  /   = ħω [Ϡ ]  [ξ ] [,ς]   ψ μ / h/c ψ(xt)  [x  t ]..







Eletrodinâmica quântica (EDQ), ou QED, de Quantum electrodynamics, é uma teoria quântica de campos do eletromagnetismo. A EDQ descreve todos os fenômenos envolvendo partículas eletricamente carregadas interagindo por meio da força eletromagnética. Sua capacidade de predição de grandezas como o momento magnético anômalo do múon e o desvio de Lamb dos níveis de energia do hidrogênio a tornou uma teoria renomada.

História

A eletrodinâmica foi a evolução natural das teorias da antigamente denominada segunda quantização, isto é, quantização dos campos, ao ramo da eletrodinâmica.

As teorias de campo são necessariamente relativísticas, já que admitindo-se que haja partículas mensageiras na troca de energia e momento mediados pelo campo, essas mesmas partículas, a exemplo do fóton (que historicamente precedeu a descoberta das teorias de quantização do campo) devem se deslocar a velocidades próximas ou igual à da luz no vácuo (c = 299 792 458 m/s).

A primeira formulação da eletrodinâmica quântica é atribuída a Paul Dirac, que nos anos 1920 foi capaz de calcular o coeficiente de emissão espontânea do átomo.[1] Essa teoria se desenvolveu a partir dos trabalhos Sin-Itiro TomonagaJulian Schwinger e Richard Feynman. Pelos seus trabalhos, eles ganharam o prêmio Nobel de Física em 1965.

Desenvolvimento formal

A eletrodinâmica quântica é uma teoria abeliana de calibre, dotada de um grupo de calibre U(1).

campo de calibre que media a interação entre campos de spin 1/2, é o campo eletromagnético, que se apresenta sob a forma de fótons.

A descrição da interação se dá através da lagrangiana para a interação entre elétrons e pósitrons, que é dada por:

onde  e sua adjunta de Dirac  são os campos representando partículas eletricamente carregadas, especificamente, os campos do elétron e pósitron representados como espinores de Dirac.






Na mecânica quânticaequação de Dirac é uma equação de onda relativística proposta por Paul Dirac em 1928 que descreve com sucesso partículas elementares de spin-½, como o elétron. Anteriormente, a equação de Klein-Gordon (uma equação de segunda ordem nas derivadas temporais e espaciais) foi proposta para a mesma função, mas apresentou severos problemas na definição de densidade de probabilidade. A equação de Dirac é uma equação de primeira ordem, o que eliminou este tipo de problema. Além disso, a equação de Dirac introduziu teoricamente o conceito de antipartícula, confirmado experimentalmente pela descoberta em 1932 do pósitron, e mostrou que spin poderia ser deduzido facilmente da equação, ao invés de postulado. Contudo, a equação de Dirac não é perfeitamente compatível com a teoria da relatividade, pois não prevê a criação e destruição de partículas, algo que apenas uma teoria quântica de campos poderia tratar.

A equação propriamente dita é dada por:

,

na qual m é a massa de repouso do elétron, c é a velocidade da luzp é o operador momentum linear  é a constante de Planck divida por 2πx e t são as coordenadas de espaço e tempo e ψ(xt) é uma função de onda com quatro componentes.

Cada α é um operador linear que se aplica à função de onda. Escritos como matrizes 4×4, são conhecidos como matrizes de Dirac.




 / {} / G ψ = E ψ = E [G+ψ ω /c] =   [/ ] /  /   = ħω [Ϡ ]  [ξ ] [,ς]   ψ μ / h/c ψ(xt)  [x  t ]..






Comentários

Postagens mais visitadas deste blog